jueves, 12 de mayo de 2011

LEYES DE MENDEL

1ª Ley de Mendel: Ley de la uniformidad

Establece que si se cruzan dos razas puras para un determinado carácter, los descendientes de la primera generación serán todos iguales entre sí (igual fenotipo e igual genotipo) e iguales (en fenotipo) a uno de los progenitores.
No es una ley de transmisión de caracteres, sino de manifestación de dominancia frente a la no manifestación de los caracteres recesivos. Por ello, en ocasiones no es considerada una de las leyes de Mendel. Indica que da el mismo resultado a la hora de descomponerlo en fenotipos (F).

2ª Ley de Mendel: Ley de la segregación

Conocida también, en ocasiones como la primera Ley de Mendel, de la segregación equitativa o disyunción de los alelos. Esta ley establece que durante la formación de los gametos cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.
Mendel obtuvo esta ley al cruzar diferentes variedades de individuos heterocigotos (diploides con dos variantes alélicas del mismo gen: Aa), y pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con características de piel verde, comprobó que la proporción era de 3:4 de color amarilla y 1:4 de color verde (3:1).
Según la interpretación actual, los dos alelos, que codifican para cada característica, son segregados durante la producción de gametos mediante una división celular meiótica. Esto significa que cada gameto va a contener un solo alelo para cada gen. Lo cual permite que los alelos materno y paterno se combinen en el descendiente, asegurando la variación.
Para cada característica, un organismo hereda dos alelos, uno de cada pariente. Esto significa que en las células somáticas, un alelo proviene de la madre y otro del padre. Éstos pueden ser homocigotos o heterocigotos.
En palabras del propio Mendel:
"Resulta ahora claro que los híbridos forman semillas que tienen el uno o el otro de los dos caracteres diferenciales, y de éstos la mitad vuelven a desarrollar la forma híbrida, mientras que la otra mitad produce plantas que permanecen constantes y reciben el carácter dominante o el recesivo en igual número. "
Gregor Mendel

3ª Ley de Mendel: Ley de la segregación independiente

En ocasiones es descrita como la 2ª Ley. Mendel concluyó que diferentes rasgos son heredados independientemente unos de otros, no existe relación entre ellos, por tanto el patrón de herencia de un rasgo no afectará al patrón de herencia de otro. Sólo se cumple en aquellos genes que no están ligados (en diferentes cromosomas) o que están en regiones muy separadas del mismo cromosoma. Es decir, siguen las proporciones 9:3:3:1.
En palabras del propio Mendel:
"Por tanto, no hay duda de que a todos los caracteres que intervinieron en los experimentos se aplica el principio de que la descendencia de los híbridos en que se combinan varios caracteres esenciales diferentes, presenta los términos de una serie de combinaciones, que resulta de la reunión de las series de desarrollo de cada pareja de caracteres diferenciales."
Gregor Mendel

miércoles, 11 de mayo de 2011


ESTRUCTURA DEL ARN

Esta estructura es similar a la del ADN pero con diferencias en su composición. Lleva una sola cadena de polinucleotido. En varios tipos de ARN se encuentra una estructura secundaria que se parece a una cadena de ADN y es que la cadena lineal del ARN toma forma de horquilla uniendose las bases mediante puentes de hidrógeno. El ARN se encuentra en la pared de los ribosomas. Hay varios tipos y cada uno de ellos va a desempeñar una función diferente en la síntesis de proteinas y también en la transferencia de información del ADN. Se puede afirmar que el ARN se sintetiza en el nucleo, como un filamento complementario a una de las cadenas del ADN. En el momento que se sintetiza el ARN existe dentro del nucleo un híbrido ADN-ARN de vida corta. Una vez separado el ARN atraviesa la membrana nuclear y se dirige a los ribosomas que se encuentran en el citoplasma, es el ARN mensajero. El ARN ribosómico es el que se encuentra en los ribosomas unido a las proteinas. Una vez que el ARN mensajero se une a los ribosomas sirve como molde para la interconexión entre los diferentes aminoacidos. Son transportados por pequeñas moléculas solubles de ARN que se conoce como ARN transportador.
Como norma general puede decirse que el ARN mantiene una estructura filamentosa o cadena sencilla aunque en algunas ocasiones se presente con dos filamentos. Por este motivo no presenta gran estabilidad para ello se enrosca obteniendo una mayor estabilidad.

jueves, 5 de mayo de 2011

HISTORIA DEL ARN


El acido ribonucleico (ARN), o ribonucleic acid (RNA) fue descubierto, junto con el ADN o DNA en 1868 por Friedrich Miescher, que los llamó nucleína ya que los aisló del núcleo celular. Más tarde, se comprobó que las células procariotas, que carecen de núcleo, también contenían ácidos nucleicos. El papel del ARN en la síntesis de proteínas fue sospechado en 1939. Severo Ochoa ganó el Premio Nobel de Medicina en 1959 tras descubrir cómo se sintetizaba el ARN.
En 1965 Robert W. Holley halló la secuencia de 77 nucleótidos de un ARN de transferencia de una levadura con lo que obtuvo el Premio Nobel de Medicina en 1968. En 1967, Carl Woese comprobó las propiedades catalíticas de algunos ARN y sugirió que las primeras formas de vida usaron ARN como portador de la información genética tanto como catalizador de sus reacciones metabólicas (hipótesis del mundo de ARN). En 1976, Walter Fiers y sus colaboradores determinaron la secuencia completa del ARN del genoma de un virus ARN (bacteriófago MS2).
En 1990 se descubrió en Petunia que genes introducidos pueden silenciar genes similares de la misma planta, lo que condujo al descubrimiento del ARN interferente. Aproximadamente al mismo tiempo se hallaron los micro ARN, pequeñas moléculas de 22 nucleótidos que tenían algún papel en el desarrollo de Caenorhabditis elegans. El descubrimiento de ARN que regulan la expresión génica ha permitido el desarrollo de medicamentos hechos de ARN, como los ARN pequeños de interferencia que silencian genes  http://es.wikipedia.org/wiki/Arn